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Abstract

The California Environmental Flows Framework (CEFF) developed new guidance and
tools that use functional flows to establish environmental flow requirements. To support
that process we developed a new, simplified method to evaluate the ecological benefit of
a potential functional flow regime. We used the method in an evolutionary algorithm-
based optimization model to produce optimized economic/environmental trade-off curves.
Trade-off curves inform the best likely consequences of deviating from flows recommended
in the CEFF process, supporting a second, more social balancing, phase of developing
environmental flow requirements. We applied the model to water years 2010 and 2011
on the Cosumnes River watershed in California, but the same methods could be used
elsewhere provided data are available. Larger models failed to converge in a reasonable
time period, but a single segment model produced an optimized functional flow timeseries
and trade-off curves.



Chapter 1

Introduction

Human water use creates pressure on aquatic ecosystems, which are in decline in Cal-
ifornia and globally (Moyle et al., 2013; Howard et al., 2015; Dudgeon et al., 2006).
Withdrawals of water stress river ecosystems in a variety of ways and river flow man-
agement must balance withdrawals with maintaining enough water in streams to sustain
ecological functions. The reservations of water to support ecological functions are gen-
erally referred to as environmental flows (Arthington, 2012). Since at least the 1940s,
numerous methods have been developed to determine the river flows required to support
ecosystem function. Many methods employed in these environmental flow assessments
(EFAs) focus only on maintaining a minimum flow in river systems instead of understand-
ing and supporting all major ecosystem functions. In recent decades, there is increasing
interest to recreate features and variability of natural flow regimes to provide more effec-
tive support for native ecosystems. In California, a new approach to environmental flows
assessments uses the concept of functional flows (Yarnell et al., 2015; Yarnell et al., 2020;
CEFF Contract Team, 2020).

An environmental flow assessment may be used to establish a set of flow quantity
and quality requirements for a river. In some cases, the assessment may require specific
reservoir release volumes, while in others, it may specify that the reservoir must release
enough water to ensure a downstream objective is met at the correct time, such as
connecting a floodplain for fish rearing (Muth et al., 2000; Chart et al., 2007). In any
case, the requirements attempt to balance the needs of ecosystems and humans.

Evolutionary algorithms, used in system optimization, could support development of
these environmental flow requirements and inform the trade-offs involved in environmen-
tal flow requirements. A tool built to help understand trade-offs would have significant
applicability in California, where the California Environmental Flows Framework provides
a science-based process for establishing the ecological requirements, but where environ-
mental flow requirements will be decided through a social process.

This thesis proposes methods for evaluating the ecological benefit of flows based on the
functional flows approach and a model and reusable tool that optimizes environmental
flows and water extractions for every stream segment in an entire basin. The goal is
to support the social process of setting environmental flow requirements by producing
trade-off curves that can inform the consequences of deviating from recommended flows.
It includes a sample application for the Cosumnes River watershed in California, but
the same process and software could be used elsewhere in the state provided data are
available.
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Chapter 2

Background and Model Description

We begin by exploring the history of environmental flow assessment and its current appli-
cation in California, including the use of optimization algorithms to inform environmental
flow options and management.

2.1 Environmental Flows

The flow regime of rivers is most commonly characterized with hydrographs using mea-
sures of magnitude, timing, duration, frequency, and rate of change (Poff et al., 1997).
Early environmental flows emphasized simple minimum flows, but eventually encom-
passed broader ecosystem objectives and variability (Tennant, 1976; Poff et al., 1997).
Tharme (2003) broadly characterizes environmental flow management techniques into six
categories: hydrological, hydraulic rating, habitat simulation, holistic (ecosystem), hy-
brid, and ”other” methods (Table Table 2.1). No single method dominates environmental
flow development. Tharme (2003) found 207 methods globally for establishing environ-
mental flows. At that time, minimum flows were the most common and Arthington (2012)
notes that 70 percent of published flow setting methods use non-holistic techniques de-
spite their well-known weaknesses in not supporting broad ecosystem function.

As Poff et al. (1997) observed, natural variability drives ecosystems, and not sim-
ple averages. By 2007, it was well established that interannual variation is critical for
systems (Mathews and Richter, 2007). Holistic methods attempt to preserve important
characteristics of the original flow regime’s variation, even while allowing extractions of
water. Since their development, holistic methods have received the most attention, in
part because the analysis often encompasses tools used in hydrologic, hydraulic rating,
and habitat simulation approaches (Tharme, 2003).

Some recent methods in the literature focus on hydrologic alteration as a basis for
establishing environmental flows. Mathews and Richter (2007) write that often, deter-
mining the degree of hydrologic alteration is useful because it requires understanding
pre-alteration conditions that the ecosystem is adapted to and how far the system has
deviated from this baseline. They suggest that this information “can focus flow protec-
tion and restoration activities, provide direction for ecological research and monitoring,
and identify priority management actions” (Mathews and Richter, 2007, p. 1401).

A prominent holistic process is described in the Ecological Limits of Hydrologic Al-
teration (ELOHA) framework (Poff et al., 2010; Kendy et al., 2012). The framework
involves four main components, each having detailed steps:
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Table 2.1 Description of the six primary types of methods used to establish environ-
mental flows. Adapted from Tharme (2003) and Arthington (2012).

Technique How it sets flows
Hydrological Relies on hydrologic data and typically sets a minimum flow.

Occasionally uses quantity or quality of upstream habitat to set
flow requirements.

Hydraulic
Rating

Uses cross-sectional measurements of hydrologic variables, such as
wetted perimeter or depth. These measurements are plotted against
discharge to find flows needed to maintain habitat at sufficient
quality and quantity.

Habitat
Simulation

Analyzes the amount and quality of instream physical habitat
available at different flow levels.

Holistic Modifies and preserves elements and features of the original flow
regime, using resulting hydrograph to set flows.

Combined or
Hybrid

Incorporates aspects, concepts, and tools from more than one of the
other methods.

Other Designed for other purposes but adapted for use in EFAs.

1. Obtain the “hydrologic foundation”, or the current flows and conditions

2. Classify river types to apply lessons for studied rivers to new places

3. Establish flow-ecology relationships, which help understand how flow alteration
affects ecological condition.

4. Set goals for a desired future condition

Following the official steps, ELOHA feeds into a social process of evaluating soci-
etal values, management needs, and acceptable levels of alteration to ecology in setting
environmental flow allocations. The result includes information both on what flows the
ecosystem needs and how much society is willing to provide, with a process that recognizes
the inherent tension between the two objectives.

The ELOHA framework is location agnostic and each implementer appears to con-
struct the components of the framework differently (Kendy et al., 2012). For example,
Kendy et al. (2012) describe nine case studies and show that in each case, the implemen-
tation uses different data and processes to build each component of ELOHA. In addition,
Sanderson et al. (2012) built a tool as part of a pilot for parts of Colorado called the
Watershed Flow Evaluation tool, which could have supported more standard application
of ELOHA. While they describe the tool as generalizable to other locations, no code or
tool is publicly available.
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2.1.1 Functional Flows

Figure 2.1 Functional flow components illustrated over a reference hydrograph. The
dark line represents example manufactured functional flow regime during a
moderate water year. Adapted from Yarnell et al., 2020.

Current environmental flow discussions center on more complete characterizations of
flows, such as “functional flows”. Functional flows mimic characteristics of unimpaired
flow most vital to the ecosystem while still allowing for human withdrawals and alteration
(Yarnell et al., 2015; Yarnell et al., 2018). Functional flows support major functional el-
ements, processes, and signals of a river system to benefit the whole ecosystem. Rather
than recreating historical flows, instead ”flow components” such as ”winter peak flow”,
”spring recession” and ”summer base flow” support critical ecosystem and geomorphic
processes.

Components distill variation of a hydrograph into a set of defined boxes that represent
specific assessed flow needs of the ecosystem, as seen in Figure 2.1. A typical functional
flow attempts to provide flows within each functional flow component box during a water
year to support the ecosystem function each box represents (see black line in Figure 2.1).
As a result, flow components provide targets for water managers during environmental
flow development and operations, identifying important hydrograph behavior along with
the flexibility to extract or modify higher flows.

2.1.2 California Environmental Flows Framework

Recently, the State of California embarked on an effort to establish environmental flow
requirements statewide. The initiative, called the California Environmental Flows Frame-
work (CEFF), uses the approach outlined in Yarnell et al. (2020), which complements the
ELOHA process but is adapted to address the difficulties in collecting the data ELOHA
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requires at the statewide scale. The use of functional flows avoids the need to develop
explicit flow ecology relationships for each stream reach because the authors assume
matching historical flows through functional flows broadly supports instream ecology.

CEFF draws on the concept of functional flows proposed by Yarnell et al. (2015)
(see Figure 2.1). The effort conceptualizes flow components in terms of their ”boxes”,
defined by the timing, duration, and magnitude of a described flow, such as summer
baseflow. The boxes are defined by a set of values called metrics defined by historical
quantile values for hydrograph characteristics like timing, magnitude, and duration (eg:
10th percentile flow magnitude). Peak flow components also require frequency metrics,
and spring recession components require rate of change metrics.

CEFF includes five flow components of three core types, each with their own require-
ments and behaviors (Yarnell et al., 2019).

1. Baseflow components assess whether the segment has enough flow compared to
historical data. They consider flows based solely on whether the flow is within
historical ranges of magnitude, timing, and duration. The dry season and wet
season each have baseflow components.

2. Peak components require magnitude and timing as with baseflow components, but
require more variability and higher magnitudes. A functional flow that stays locked
in peak flow would be less beneficial, or possibly even detrimental, than a functional
flow that includes peak flows but returns to baseflow after individual high flow
events. Fall and winter each have separate peak components, with a single flushing
flow for fall while the winter peak flow can occur many times based on modeled
frequency data.

3. Recession components focus on rate of change as flows decrease, typically from
winter rain and snow into summer baseflow. Flows must still be in historical timing
and magnitude ranges and must also maintain a daily rate of decrease matching
ecosystem needs. Currently a single recession component covers spring transition
from winter to summer flow.

During an environmental flow assessment, agency staff using CEFF will assess alter-
ation from baseline conditions by comparing flow metrics for each of these components
to modeled historical values. The authors of the guidance document state that:

”The Framework provides guidance on developing ecological flow regimes, given
regional or site-specific stream conditions, management goals, and desired eco-
logical outcomes” (CEFF Contract Team, 2020).

Those using the framework then use the ecological flow regime to develop environmen-
tal flow prescriptions. CEFF is on track to become the State Water Resources Control
Board’s standard approach for development of environmental flows, making a consistent
process statewide that supports the state’s broad water resilience objectives (California
Natural Resources Agency et al., 2020).

Like ELOHA, CEFF expects that the data and modeling collected when developing
environmental flows will be used in a social process with stakeholders that determine how
the science is used and applied. While the CEFF process itself provides the ecological
flow regime, the development of environmental flow prescriptions will often require an
understanding of the trade-offs or consequences of deviating from the ecological flow
regime.
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2.2 Metaheuristics in Environmental Flows

Optimization tools are a promising approach to developing information on trade-offs.
Optimization has a deep history in environmental flows, particularly with the use of linear
programming and metaheuristics. Metaheuristics is a subfield of stochastic optimization
frequently applied to what Luke (2013) describes as ”I know it when I see it problems.”
In such problems, the quality of the solution can be readily evaluated, but inputs required
to generate a good solution are imperfectly known, either due to complex interactions,
or incomplete knowledge about inputs. In an environmental flows context, this would
mean that it is possible to recognize a near-optimal flow, but less is known about which
pieces of the system of study should be adjusted to obtain that flow. More broadly, in
water resources, metaheuristics has been used for model calibration, planning, design, and
operations (Maier et al., 2014). They have been applied to problems of water distribution,
groundwater management, river-basin planning and management (Maier et al., 2014).

Evolutionary Algorithms (EAs) are a specific type of metaheuristic drawing inspira-
tion from evolutionary biology. An EA uses random variations combined with a fitness
function that evaluates potential solutions to converge on a near-optimal result. These
algorithms are well-suited to situations where potential outcomes may conflict with each
other, making them useful in environmental flows where allocation of water in one location
may reduce water available elsewhere (Horne et al., 2016).

Maier et al. (2014) detail the history of metaheuristics in water resources, noting their
increased use since 1991 when they were first applied to water optimization. The authors
note that EAs have a few advantages over other optimization tools:

1. Their underlying concepts are easy to understand.

2. They are easy to add to existing simulation models, reducing the need for problem
simplification

3. They support parallel processing, allowing them to take full advantage of available
computing power.

4. They are adaptable to many problem spaces and contexts that support an ”explore
and exploit” strategy that searches the whole problem space and narrows in on
near-optimal solutions.

Literature on environmental flow optimization appears dominated by reservoir oper-
ations research, and Horne et al. (2016) explicitly note that ”many of the operational
models were developed for optimizing environmental releases from hydropower dams.”
The authors found that most studies (27 of 42) used a metaheuristic, usually evolution-
ary algorithms. Linear and mixed integer linear programming models were the next most
common, with 8 studies, and non-linear and dynamic programming were used in 7 studies.
Of these, six studies focused on basin-level optimization, but mostly through reservoir
operations. One study focused specifically on flows in California for fish. It maintained
a narrow reach scale analysis, but used simulated annealing to estimate optimal flow
timing across a water year for fall Chinook salmon in California’s Central Valley (Jager
and Rose, 2003).

In contrast to other optimization methods, such as linear programming, EAs do not
guarantee global or local optimal solutions. However, they can guarantee near-optimal
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solutions, given sufficient run time, which will vary by model. Still, their use for envi-
ronmental flows may help with the more complex relationships among variables, or the
types of decisions being made. Relative to linear programming, decision variables for
environmental flow problems are often nonlinear. For example, providing additional flow
does not produce a known, constant net benefit to species. The benefit can vary based
upon other conditions and the current level of flow, and in some cases additional flow can
cause benefits to decrease.

2.3 Assessing Trade-offs

To support the social portion of environmental flow development with optimization, con-
sider the general case of trade-offs in resource management. Resource constraints and
uncertain outcomes are fundamental challenges for ecosystem managers. A manager may
wish to take many actions based on scientific processes, but will need to make decisions
based on 1) the values of the resource to each stakeholder, 2) available funds, staff, and
other resources, 3) legal requirements, and 4) on the likely outcomes of using resources on
any action. Potential strategies to address allocation of resources include expert planning
processes (such as Joseph et al., 2009) and computer modeling.

Decision support tools are designed to aid this kind of situation by providing infor-
mation on many possible outcomes for a range of available choices. Decision support
can be as simple as a table of choices and expected results and as complex as interactive
graphical applications that a manager can tune to a specification while visualizing results
in many dimensions.

Optimization algorithms are a common tool for decision support. They typically find
optimal choices or reduce the problem space by removing infeasible or objectively bad
results, providing a set of choices to examine based on other criteria. Specifically, a multi-
objective optimization model can reveal trade-offs among available choices, allowing for
a better understanding of the costs and benefits of particular choices.

Imagine a simple case where we can allocate water for environmental uses or economic
activities such as farming, industry, or municipal uses. In a few cases, water allocated
to one can support the other, such as in many ecotourism activities, but in most cases,
water allocated to one cannot benefit the other, resulting in a trade-off. A trade-off can
be as basic as a linear relationship, such as one unit of water allocated to the environment
produces one unit of environmental benefit and removes one unit of benefit from economic
activities. In many cases, the relationship will be more complicated than a one to one
trade-off, and can have interesting features that guide decisions, such as curves, kinks,
and benches.

Null et al. (in review) describes an approach to determining whether specializing
streams or stream reaches by purpose could yield improved outcomes. Using multi-
objective optimization, a trade-off curve, or Pareto front, of environmental and economic
benefits can be derived for each unit of study, such as a stream segment. The shape of this
curve would guide whether specialization of the segment or compromise between interests
is the optimal outcome for a set of streams or stream reaches (see Figure 2.2). If the
curve is convex, as in the solid curve on Figure 2.2, then a single unit increase in benefit
for either economic or environmental purposes comes at great cost to the benefit of the
other objective. As a result, managers have incentive to specialize that stream segment
and others like it, dedicating some for economic purposes and some for environmental

7



Figure 2.2 Example trade-off curves in watersheds for environmental and economic ben-
efits and their implications for management. Arrows point in the direction
of maximum benefit along each curve. Adapted from Null et al. (in review).

purposes. For this specialization, they would achieve a higher total benefit because the
benefit to each under compromise is low.

However, if the curve is concave, as in the dashed curve on Figure 2.2, then economic
and environmental benefits are maximized through compromise on each stream or stream
reach. Each unit of increased benefit to one objective comes at relatively little cost to
the other objective. Such a situation creates incentive to maximize benefits by balancing
the objectives in the same subwatershed. In some cases, curves will have other features –
small benches or variation caused by thresholds. For example, there may be a minimum
flow before the environment sees any benefit or before it is economically feasible to extract
water. Alternatively, at higher levels of environmental flows, floodplains could connect,
causing a disproportionate increase in environmental benefit. These features also inform
management, though the core strategy will be directed by the overall shape of the curve
as shown in Figure 2.2.

Instead of a tool that finds an optimal allocation of water for each purpose this thesis
describes a tool that builds trade-off curves. The goal is to inform management where
existing environmental flow processes, such as CEFF, have already informed the best en-
vironmental allocation via the ecological flow regime. The trade-off curves would then be
used as part of the social process that sets the environmental flow prescription, providing
information on the consequences of deviating from the best allocation to support other
goals. Other optimization tools in California may provide similar information at a larger
regional scale, such as CALVIN (Draper et al. (2003) and Dogan et al. (2018)), but typ-
ically are focused on infrastructure operations rather than environmental requirements.
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Purkey et al. (2018) note that stakeholder processes increasingly drive water resources
decisions in the United States and the growing recognition that deterministic models
may be inadequate in the face of uncertainty. These two factors combined suggest that
models and approaches that provide many possible outcomes, instead of a single true
result, could be strongest. A model that produces many possible results can acknowledge
its own uncertainty and give stakeholders options as they weigh factors not incorporated
into models. The decision making model presented in Purkey et al. (2018) includes steps
for options analysis and results exploration, while the framework they built their model
on includes an explicit step to assess trade-offs.

Others have approached similar problems with differences in place, scale, and specific
methods. Homa et al. (2005) developed a method to assess the performance of environ-
mental flows relative to water supply reliability. The result includes four options they
describe as the start of a Pareto front. Maloney et al. (2015) developed a decision support
application that evaluates and compares many scenarios. Its primary difference is that
it appears to operate at more localized scales rather than supporting basin-scale decision
making. The most similar recent work is by Zamani Sabzi et al. (2019) and compares
two objectives of ”environmental satisfaction” and ”societal satisfaction” in the Red River
Basin. They developed multiple Pareto fronts with a linear program that adjusts soci-
etal water needs to inform how conservation can improve available decisions (similar to
Rheinheimer et al. (2012)). They also model an entire basin’s reservoir releases using
water rights data to inform societal demand and a minimum instream flow requirement
for environmental flows.

2.4 Optimizing Environmental Flows

2.4.1 Flow Components in Optimization

An optimization model that supports CEFF would attempt to optimize flows so that they
fall within the boxes for each flow component as much as possible, while allowing for water
extraction. The results of a hypothetical optimization for a single stream segment over a
water year are shown in Figure 2.3. The figure shows the water year 2018 hydrograph for
Goodyear’s Bar in gray, environmental flow allocation generated by the model in black,
flow components in the boxes, and ”base benefit”, the hypothetical calculated value of
the flow to the ecosystem in the top graph.
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Figure 2.3 Hypothetical results of an optimization model run calculating the daily ben-
efit to the ecosystem of the flows shown in the black line, based on the flow
components shown in the boxes. The Base Benefit quantity in the top panel
assesses how well flows align with historical flows in timing, duration, and
magnitude and is used as a multiplier along with species presence data to
general a total benefit of annual flows.

Figure 2.3 contains a few differences in its illustration of flow components compared to
the example in Figure 2.1. First, the component boxes tend to be much larger, especially
for the peak events. Where the first figure shows discrete peak events, the hypothetical
results show the entire range of time and magnitude where peak events could occur, based
on probabilistic models from Grantham et al., in prep. Second, the environmental flow
allocation (lower black line) in the first figure is a final flow regime while in Figure 2.3 it
is a flow regime that evolved semi-randomly for evaluation in a model. It represents one
of very many potential flows generated by an evolutionary algorithm in an optimization
context. The top line is the benefit calculated by the model for this particular hydrograph.
It provides a daily benefit value of 1 for flows within baseflow boxes or for flows that match
spring recession requirements, with small spikes in value above 1 for peak flows. The
peak value tails off to incentivize return to baseflow. Specifics of these calculations are
described in chapter 3. The power here is that while, given the right data, a human can
quickly draw one functional flow regime, the computer can evaluate millions of functional
flow regimes across thousands of stream segments while accounting for the effects and
constraints of one functional flow on another, as well as on economic withdrawals of water.
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In evaluating many potential flow regimes, an evolutionary algorithm can find options
that perform best across a region or basin.

2.4.2 Objectives and Decisions

To build trade-off curves from the single segment environmental benefit in Figure 2.3 we
formulate a basin-wide optimization problem with objectives maximizing environmental
benefit (Equation 2.1) and economic benefit (Equation 2.2). Each objective has one de-
cision variable for the total flow volume or percent allocated to its exclusive use from
the available water. The model uses a basin-wide hydrologic network that ignores ex-
isting infrastructure. Instead of optimizing reservoir releases or extractions, the model
assumes operators make a decision to withdraw water or not withdraw water on every
stream segment. It uses withdrawn water for economic purposes and instream water for
environmental flows. The instream flow also flows downstream where the same choice is
repeated again. In analyzing basins in this way, we explore possibilities for the future
of the system rather than developing optimal operating rules or instream flow require-
ments directly. Evolutionary algorithms are well-suited to this task because they can
explore and exploit the realm of possible options. They conduct a wide sample of the
whole set of physically possible options and then refine the better performing ones. With
such information, we can build trade-off curves (Pareto fronts) to better understand the
consequences of both major and minor changes in decision variables.

Environmental Benefit =
365∑
d=1

n∑
s=1

B(d, s, Pds) (2.1)

where

Environmental Benefit = Basin-wide environmental benefit

d = Day of water year

s = Stream segment

Pds = Proportion of daily flow reserved instream for stream segment

Initial basin environmental benefit uses independent decision variables for proportion
of flow reserved for instream use. Within the benefit functions the independent variables
are connected via a mass balance calculation. Total basin benefit is calculated by the
sum of benefits for individual stream segments for each day of the water year. Adams
(2018) describes several alternative ways of aggregating environmental benefits over time
and space, and their importance. The approach used here does not account for habitat
fragmentation and may be more appropriate for ecosystems dominated by species residing
in single river reaches, not migrating across reaches. The environmental flow benefit
calculation in Equation 2.1 is a function of the day of the water year (d), stream segment
(s), and water allocated to environmental flows for that segment and day (Qd,s), calculated
for every day and stream segment, then summed to calculate the benefit across the entire
basin of study. The function B is detailed in chapter 3. Water dedicated to instream
flows is available for downstream use for instream flows or extraction.
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Economic Benefit =

Q∑
i

−P

D
∗ qi + P (2.2)

where

Economic Benefit = Basin-wide economic benefit

P = Price of the first unit of water

D = Total demanded units of water

qi = i th unit of extracted water

Q = Total units of water extracted

Water not dedicated to instream flows is extracted and pooled across the basin for
the entire year to calculate a total water diversion. Economic benefit is calculated as the
sum of payments for demanded water in the basin, implemented as a linear demand curve
using the price for the first unit of water and the desired number of units. Equation 2.2
describes the demand curve based on the price, P , for the first unit of water delivered and
total units of water desired from the basin, D. When the total units of water extracted,
Q, equals or exceeds D, then P is 0 as well because no more water is desired. The models
sums the price of water for all units extracted to calculate total economic benefit of the
diversion.

The algorithm will maximize economic and environmental benefit across the whole
basin and produce a basin-wide trade-off curve, but an important byproduct of the opti-
mization’s structure is localized trade-off curves. We expect basin-wide trade-off informa-
tion from plotting the Pareto front of the complete optimization, but in the process, we
will also have developed trade-off curves for each stream segment in the watershed. This
works where basin performance is a summed aggregation of reach performance. Some
curves may explore the performance space better than others since the algorithm is not
optimizing for each segment on its own, but they are likely to provide useful information
on localized trade-offs, regardless.

2.5 Summary

Optimization approaches have a deep history in water resources and environmental flows
assessment, including the use of metaheuristics in particular (Maier et al., 2014). A
model that evaluates performance of both economic and environmental benefits for an
entire basin would be useful during a social process applying the science of environmental
flows to policy. The next chapter describes the internal workings of the environmental
benefit objective function shown in Equation 2.1 and the following chapter uses the
objective functions in an optimization to produce trade-off curves for the Cosumnes River
watershed for multiple demand water demand scenarios.
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Chapter 3

Quantifying Flow Benefits

3.1 Introduction

In the previous chapter, the environmental benefit objective expressed in Equation 2.1
included a double summation of another function B that accepts parameters for each
day of the water year, the stream segment, and the decision variable of flow on that day
for the stream segment. This chapter describes how the function B uses those values
to assess environmental benefit on a single segment and day, which is then summed to
assess total benefit in the objective function. This common approach to assessing basin
environmental benefit might not be appropriate for some ecosystems, such as those driven
by migratory species whose success in a stream reach for a period of time is driven by
their survival and prosperity well beyond that time, which can be driven by a combination
of the worst conditions experienced (say high temperatures affecting survival) and their
growth during that period, perhaps based on cumulative food availability. Those factors
are not explicitly included in this model, though the functional flows approach the model
is based on restores processes that may provide broad support for river-dependent species
(Yarnell et al., 2020).

3.2 Background

Recent work by Patterson et al. provides methods for identifying characteristics of hydro-
graphs given historical flow data and includes the ability to produce metrics describing
those characteristics (Patterson et al., In Review; Lane et al., 2019). The authors built
software to assess annual flow data to estimate where features occur and generate flow
metrics, such as a the 25th percentile spring magnitude or the 50th percentile dry season
start timing. Grantham et al. (in prep) interpolated the flow metric calculations to all
stream segments in the state. While the functional flows approach assumes that matching
historical flow components using flow metrics benefits the ecosystem, it does not define
a single way to construct flow component boxes from historical data, or define how to
calculate benefits to the ecosystem from flows in the boxes.

To support setting environmental flow requirements, we need to establish how valuable
or beneficial a particular flow is at a time and place. A capability to quantify the benefit
of a flow underlies flow optimization. This chapter outlines an initial method to establish
flow benefits, using modeled historical flow information as a guide for flows’ benefits to
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ecosystems. The chapter starts with a single day’s flow on a single river segment and
moves to discuss evaluating benefits over a river basin and over an entire year.

3.3 Methods

The model establishes benefit in pieces by assessing a hydrograph’s alignment with con-
structed flow components. Conceptually the approach is a type of hydrograph alteration
assessment, with hydrographs that are unaltered relative to the historical flow compo-
nents receiving high scores and highly altered hydrographs scoring lower. The model
operates at the scale of stream segments as defined by the National Hydrography Dataset
(NHD) (Corporation, 2018) because relevant flow metrics are available at this scale from
Grantham et al. (in prep), biological data from PISCES (Santos et al., 2014) can be
adjusted to this scale, and stream segments are relevant to environmental flow decisions.
California has approximately 130,000 stream segments, which span the distance between
any two stream junctions and so vary in length. As a fundamental calculation, the model
compares a water year hydrograph after water has been withdrawn for a stream segment
against the segment’s flow components. The model makes separate assessments for each
of the five CEFF components, but examines daily flows and returns values as a daily
timeseries for each flow component. After aggregating the flow benefit values for the
year, the model then multiples the calculated benefit value by the number of fish species
assumed to be present to increase the biological relevance of the flows. The multiplica-
tion ensures that segments that support more species receive additional importance in
the model.
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3.3.1 Single Segment and Day

Building Components and Establishing Benefit

Figure 3.1 Simplified diagram of how a flow component is built from magnitude, timing,
and duration data. The minimum and maximum magnitude values establish
the lower and upper flow values. The start timing value establishes the
first day of the water year for the component, and adding the value for the
component’s duration to the start timing value results in the end timing for
the component, or the last day of the water year it occurs on.

To assess the segment-specific daily benefit of a flow, we first need to build a structure for
a segment’s flow components in code. Each flow component needs, at a minimum, values
for the start day of the water year, end day of the water year, minimum flow magnitude,
and maximum flow magnitude. In practice, we use magnitude (CFS), start timing (day
of water year), and duration (days) values, constructing the end timing by adding the
duration and start timing, as seen in Figure 3.1.

In a simple case where we assume we know the start timing and duration exactly, a
wet season baseflow might start on day 50 of the water year and extend for 150 days. In
this case, if we add the duration to the start timing, the end day is 200, yielding an X
domain (timing) for the flow component box of (50, 200). The X domain gets slightly
more complicated for dry season flows. A dry season base flow component might start on
day 275 of the water year, and also have a duration of 150 days. When the duration is
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added to the start timing, it exceeds 365, and extends into the next water year. In this
case, we roll the end day over to the next water year and the component ends on day 60
of the water year (275 + 150 - 365 = 60), yielding an X domain for the component of
(275, 60).

The Y domain (flow) of the box has no rollovers. For a baseflow with a minimum
flow value of 10 CFS and maximum value of 200 CFS, the Y domain is simply (10, 200).
Combining the X and Y domains gives us a simple flow component as in Figure 3.1.

Flow components can represent variable, continuous, and uncertain flow processes. So
far, the method described here reduces the component to a fully deterministic box, where
flows inside the box in time and magnitude mean the component is happening and flows
outside the box mean it is not. Actual flows are more variable and imprecise, varying
in time, magnitude, duration, frequency, and rate of change, so we need a mechanism to
capture some of that variability.

Fuzzy sets are a concept used to incorporate qualitative reasoning and flexibility into
models with wide use in environmental and ecological systems (Salski, 2003). Fuzzy sets
allow us to distinguish between flows that match a flow component and those that do
not, with a gradual transition between the two states. The gradual transition better
reflects the natural state of flows where more extreme values get increasingly less likely,
but typically do not have hard thresholds.

Fuzzy sets are not new to environmental flow assessments. In many cases, they
are used to support habitat suitability assessments, (e.g. Jorde et al., 2001; Sun et al.,
2015; Ahmadi-Nedushan et al., 2008). In another case, Lowe et al. (2017) incorporate
uncertainty into environmental flows using fuzzy sets. Young et al. (2000) built a decision
support system that allows users to specify fuzzy values for multiple aspects of flow for
each species.
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Figure 3.2 Example construction of benefit regions based on flow magnitude and day of
water year, based on flow metric values marked on each axis. Shaded regions
result from the bounds created by these flow metrics. The model assumes
differing benefit to the ecosystem from flows in each region.

To use fuzzy sets in building flow components, we use modeled flow metrics from
Grantham et al. (in prep). They calculated and interpolated flow metrics from unimpaired
gage sites to every stream segment with a random forests model that used each segment’s
hydrogeomorphic classification (from Lane et al., 2017) and the California Unimpaired
Flows Database (Zimmerman et al., 2018). The model calculated 10th, 25th, 50th, 75th,
and 90th percentile values for each flow metric for every segment. For example, the day of
the water year indicated by a segment’s 10th percentile start time indicates the component
begins earlier in 10 percent of years and later in 90 percent of years. section C.0.4 lists
the metrics used to construct each component.

The modeled percentiles expand the view of flow components from boxes with discrete
boundaries to boxes with a fuzzy edge. Figure 3.2 shows another way to construct a flow
component, similar to Figure 3.1, but where the boundary of the component is a range
of values on each side, represented as the area in light gray in the figure. The marked
locations on the axis indicate the functional flow metric(s) we obtain the magnitude or
day of water year values from.

The most analogous part of Figure 3.2 to the simpler representation in Figure 3.1
would be the central portion defined by the 25th and 75th percentile magnitude values
on the Y axis and the 25th percentile timing and the 25th percentile timing plus the
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75th percentile duration on the X axis (dark gray, Figure 3.1). Within this area, we
assign full benefit to flows because a flow within this box in time and magnitude matches
the estimated historical flow quantity and timing. While flows are not more likely to
occur in this region than in other regions1, it does contain less extreme values within the
distribution of potential values.

We construct a second box (light gray, Figure 3.1) that fully contains the first box
using the 10th and 90th percentile magnitude values for the Y axis and the 10th percentile
timing value and the 25th percentile timing value plus the 90th percentile duration value
on the X axis. While an expansive view of the component might just use this box as
a deterministic boundary (and end up with boxes similar to Figure 2.3 as a result) for
defining benefit, this transition zone includes more extreme but still common values for
the flow component. We assign less benefit to flows in this region, decreasing with distance
from the central dark gray area.

The general approach here of using the modeled flow metric percentiles to establish
fuzzy flow components provides the foundation we use to build each type of component.
The following sections show the distinct construction, behavior, and examples of three
types of flow components.

Baseflow Components

Table 3.1 The flow metrics that provide the values in the generic piecewise benefit equa-
tion. For specific metric names from Grantham et al., in prep, see Table C.1.

V v1 v2 v3 v4

Flow
Magnitude (Q)

10th percentile
magnitude

25th percentile
magnitude

75th percentile
magnitude

90th percentile
magnitude

Day of Water
Year

10th percentile
timing

25th percentile
timing

25th percentile
timing + 75th

percentile
duration

25th percentile
timing + 90th

percentile
duration

With a conceptual understanding of how the model calculates benefit based on flow
components, we look at the specific calculations. Given a flow magnitude and a day
of the water year, it calculates two benefit values - one based on the day of the water
year, ignoring flow quantity, and the other based on the flow quantity, ignoring day of
water year. Each of these is calculated with a generic piecewise function in Equation 3.1
that varies benefit based on how well the magnitude or day value aligns with historically
modeled flow data. Equation 3.1 handles both day of water year D and flow magnitude
Q calculations, using the variable V to stand in for both. It uses four breakpoints, v1

through v4, to split the piecewise behavior while evaluating the benefit to the ecosystem
of parameter V. For magnitude benefit, we take the values of v1 through v4 from modeled
flow percentiles. For the day of water year benefit, the v1 through v4 values become
days of the water year. Table 3.1 contains the flow metrics and percentiles used for each
breakpoint. Equation 3.1 has five segments, the first and last of which are identical. It
uses flow magnitude on the Goodyear’s Bar stream segment (COMID 8058513) as an
example, discussing the calculation of benefit for flow values during dry season baseflow,

1We expect 50 percent of magnitude values to fall outside of the box. When combined with timing
values, we would expect more than half of values outside of the center box.
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B(V ) =



0, for V ≤ v1
1

(v2−v1)
(V − v1), for v1 < V < v2

1, for v2 < V < v3

1− 1
(v4−v3)

(V − v3), for v3 < V < v4

0, for V ≥ v4

(3.1)

shown in Figure 3.3. The logic is the same for day of water year benefit, except it has
added logic to handle components, like dry season baseflow, what span two water years
and thus have lower v4 values than v1 values. Using Goodyear’s Bar as an example, the
v1 breakpoint value is 44 CFS, coming from the 10th percentile modeled unimpaired flow
metric for this segment in Grantham et al. (in prep). Below this 10th percentile value, the
model assigns no benefit (B=0) to flows, since dry season flows less than 44 CFS range
from rare to not present in the historical record for this stream segment. The same logic
applies to values above v4, in this case 163 CFS coming from the 90th percentile value
for this segment. Flows exceeding 163 CFS are either rare or not observed, so the model
assigns no benefit to them for this component and segment.

80 percent of historical flows for the dry season baseflow on this segment are between
these values, so the model recognizes flows between v1 and v4 (44-163 CFS) as aligning
with the historical record and providing ecosystem benefit. It does not assign this benefit
uniformly though, but instead linearly ramps the benefit up from 0 to 1 between v1 and
v2, assigns the maximum benefit value of 1 between v2 (66 CFS) and v3 (140 CFS), and
linearly ramps back down from 1 to 0 between v3 and v4. v2 and v3 come from the
25th and 75th percentile modeled magnitude values, respectively, meaning that flows that
match the middle half of the flows seen in the historical record receive the top benefit
value.
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Figure 3.3 Sample dry season baseflow piecewise benefit calculation showing ramp up
and down of benefit near the low and high flow values based on flow (Q)
values on day 90 of the water year. The breakpoints v1 through v4 are
labeled, along with the equation used to calculate the benefit value B for
each segment.

For timing-based benefits, day of water year values for v1 through v4 are based on
combinations of flow metric values. v1 and v2 are the 10th and 25th percentile day of
water year values, respectively, from the corresponding timing metric. v3 and v4 are
calculated as the value of v2 plus the 75th and 90th percentiles of the duration metric.
When calculated values cross water years, v3 and v4 can result in day of water year values
less than v1 and v2, but benefit calculations remain as if they were in order as v1, v2,
v3, and v4. Since the complete baseflow benefit is a function of both flow magnitude
Q and day of water year (timing) D, we need some way to combine the timing-based
benefit B(D) and the magnitude-based benefit B(Q). We combine them by multiplying
them together, otherwise expressed as Bbase(Q,D) = B(Q)∗B(D). If they were summed
instead, a flow that was at the wrong time of year but with the right magnitude would
still receive benefit when it should not. The result is Bbase, which is calculated for all
component types and is used directly for baseflow components and is modified for peak
and recession components. Calculating Bbase for every day and flow combination in an
entire water year provides Figure 3.4, a visualization of the benefit provided by the flow
component on any day and for any flow value.
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Figure 3.4 Sample benefit box showing ramp up and down of benefit near the low and
high flow values for the flow component based on flow (Q) values on day 100
of the water year. Day 100 is between the q3 and q4 values for time-based
benefit, so the maximum base benefit is less than 1.

The Bbase calculation here provides a framework that the other component types
can use to alignment of timing and magnitude values of a segment with their modeled
historical values. It also provides the raw value used for baseflow components when we
include biological data, assess the whole water year, and connect stream segments.

Peak Flow Components

Where baseflows stay in a relatively narrow range for the duration of the component,
peak flows are typically more variable and larger in magnitude than the corresponding
baseflow for the same time period (see Figure 2.3’s Peak and Fall Pulse flows for example).
Despite the variability, the flow magnitude typically does not stay high for long, instead
returning to baseflow, often in a matter of days.

For example, Figure 3.5 shows the base benefit calculated for the peak flow component
of the Goodyear’s Bar gage stream segment overlaid with the water year 2018 hydrograph.
The peak and baseflow components share timing definitions and only vary in their base
benefit, Bbase, by their magnitudes. The area of high benefit is in the box while the area
below would likely be the winter baseflow area.
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Figure 3.5 Bbase for the peak flow component of the segment containing the Goodyear’s
Bar gage overlaid with the water year 2019 hydrograph.

If peak components provided the same benefit as baseflow components we would
expect an optimization model testing which flows are best to end up with a relatively
even distribution of flows between the peak and base flows for the wet season, absent other
incentives in the model. If we want to ensure distinct peak flows, which have geomorphic
and ecological benefit, we need to set up a system that temporarily provides more benefit
in a peak flow, and also incentivizes a return to baseflows.

Conceptually, to incentivize peak flows, we add additional behavior to peak compo-
nents that:

1. provides benefit higher than the max baseflow benefit of 1, called Bmax (initially
10) at least for the first day of peak flows,

2. reduces benefit daily within each individual peak flow event, eventually going below
1 to incentivize a return to baseflow, and reduces Bmax between flow events to
incentivize the correct number of peak events, and

3. multiplies the resulting daily benefit by Bbase to scale the peak event benefit by how
well it matches in timing and magnitude.

The benefit reductions within and between events are controlled by modeled flow
metrics from Grantham et al. (in prep) and shown in Equation 3.2. They modeled
the duration of individual peak flows separately from the wet season duration (used to
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calculate Bbase) and also modeled the number of peak flow events that typically happen
during the wet season (peak frequency). These values contain the same percentiles as the
other modeled metrics.

Bpeak = Bbase ∗B−R∗(L−D)
max (3.2)

where

Bmax = Maximum benefit achievable by a single peak flow event

R = Daily benefit reduction factor

L = Length of current peak flow event in days

D = Modeled median peak flow event duration for segment and component

Here we use the median values to reduce benefit, according to Equation 3.2, so that
peak events longer than the median event length on that segment will provide less benefit
than returning to baseflow would. In Equation 3.2, Bmax defaults to 10 and R defaults
to 0.5.CEFF also provides three peak magnitude metrics for 2-year, 5-year, and 10-year
exceedance. We use the 2-year exceedence values here.

Similarly, based on the modeled peak frequency data, we reduce Bmax linearly between
events so after the median number of peak events occur in a single wet season, the model
gets less benefit from additional peak events than from continuing baseflow (see right
side, Figure 3.6). This behavior reduces the height of the tailoff curve in Figure 3.6 but
does not change the length of time the event provides more benefit than baseflow.

Figure 3.6 Left: The calculated peak flow benefit tailoff curve for Goodyear’s Bar, based
on modeled flow metric data. Right: Benefit for Goodyear’s Bar peak com-
ponent calculated as if it were only baseflow (orange) or with the peak be-
havior (blue) based on water year 2019 data. The benefit for peak events
initially exceeds 1 to incentivize the model to make peak events, but the
value rapidly drops based on flow metric data to make returning to baseflow
more beneficial.
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One limitation of the current approach is that, conceptually, it may incentivize the
model to only ever provide the 25th percentile peak flow where it can get the same benefit
as it could with 75th percentile flows. A future modification could use a different gradient
from the baseflow calculations that slowly increases into higher percentiles. A gradient
would incentivize an optimization model to provide water if it is available, but also allow
water for other purposes if needed, increasing the variation in the results.

Recession Components

Baseflow and peak components assume that a flow within the timing and magnitude box
means that the component is occurring. Recession flows differ in that, while timing and
magnitude remain important, recessions are ultimately about contiguous and low daily
rates of flow change. The need to evaluate based on rate of change raises the issue of how
long flows should be less than the modeled rate of change values before we consider the
segment to be in recession.

Detecting the presence of a recession flow is easy for human eyes examining a hydro-
graph, but more difficult for a computer (Patterson et al., In Review). A true recession
will have a smooth curve from high flow to low flow, but in nature, it can be interrupted
early on by late season peak flows, or possibly by diurnal fluctuation in snowmelt. As a
result, it can be unclear to a computer algorithm that the portion of time preceding the
late peak flow was also part of the recession and that it had been interrupted. Yarnell
et al. (2016) describe that recession flows need a minimum of three contiguous weeks
without interruptions, such as large peaks and pulses or rapid drops to baseflow, for the
stream ecology to benefit. The need for three weeks is driven by the life cycles of organ-
isms, such as amphibians, that use recession flows as signals to reproduce. A peak flow
can reset the clock, or wash away egg masses, resulting in a year where the recession did
not aid those organisms.

To estimate when a recession is occurring, we look for the longest contiguous period
in the water year hydrograph with a daily rate of change less than 30 percent, calculating
the daily rate of change according to Equation 3.3.

Pchange =
Qt −Qt−1

Qt−1

(3.3)

Yarnell et al. (2016) indicate 30 percent is the maximum daily rate of change observed
in unregulated systems. Managers risk harm to aquatic communities in higher rates of
change and when sustaining 30 percent rates of change over multiple days during the
recession. They further specify that rates of change under 10 percent per day are much
more likely to benefit the ecosystem. Once a recession period is identified, a benefit is
assigned. Similar to peak flows, we multiply the calculation here by Bbase to scale by
recession timing and raw magnitude, but we still need to assess the rate of change. For
each day in the recession period, we assess the value of Pchange, the day’s rate of change
as calculated in Equation 3.3, as follows:

Pchange <0 When the rate of change is less than zero, flows are increasing, so this is
not part of a flow recession, whether or not it falls within the recession timing and
duration window. So the benefit for the day’s recession flow is zero.
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Pchange <0.10 When the rate of change is less than 10 percent the model assigns the
full base benefit Bbase value to the day’s flow.

0.10 <Pchange <90th percentile If the rate of change is not less than 10 percent,
but is less than the modeled 90th percentile rate of change for the segment, the
model assigns half of the base benefit value. While these values are still reasonable
for the segment, reducing the benefit for these rates incentivizes the optimization
to allocate flows that produce a rate of recession less than the 10 percent where
possible.

0 ≤ Pchange <0.30 If the rate of change is not in any of the previous ranges, but is still
less than 30 percent, the model assigns no benefit for the day.

Pchange >0.30 A rate of change above 30 percent means that flows are changing rapidly
and the benefit of staying at reasonable recession rates on other days can be lost
because the recession requires a consistent, slow decline in flows. Under these
conditions, we assign no benefit for the entire recession period, eliminating other
benefit calculations for other days of the recession. In the absence of this penalty,
we might expect an optimization model to have most days with good recession
rates while recovering by dropping the flow too sharply to be ecologically safe. By
including a harsh penalty for large drops, we can ensure that even if the model
drops flows, the rate will be more likely to not take away benefit gained on other
days.

The penalty for large rates of change is not applied evenly. Natural variability re-
sults in large drops in flow during the peak season with coincident timing to the spring
recession component. A penalty that triggered for any large decrease in flow would not
encourage development of recession flows in an optimization model. Instead, it assesses
if the recession has already begun by calculating the number of continuous days with low
rates of changes. With a minimum recession length of 21 days, the model implements
the penalty of no benefit across the season if the large drop occurs between 14 and 28
days after daily rates of change first went below 0.30. If a large drop occurs outside of
the 14-28 day window, it continues evaluating the rest of the hydrograph for recession
benefit.
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Figure 3.7 Flowchart of daily flow benefit calculation during spring recession. Per-
centiles refer to modeled rate of change percentiles per stream segment.

Single Segment and Day Summary

In some cases, such as during the wet season, multiple components occur on the same
day of the water year. In these cases, to estimate the daily base benefit, we sum the Bbase

of all components that occur that day. This section describes a method for assessing
alignment of flows with their historical magnitude, timing, duration, frequency, and rate
of change. The assessment is localized to each stream segment and provides a quantity
that we call benefit and represent as Bbase for use in modeling applications. In the next
section, we scale the benefit quantity according to available biological information to
increase its relevance to stream networks.
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3.3.2 Single Segment, Multiple Species, Single Day

So far, we have explored a method that estimates the benefit of flows to a segment’s
ecosystem. As presented, it does not include spatial variations and effects in stream
biology in the benefit estimate, limiting its applicability. For example, in an optimization
context, imagine two segments that each received the maximum baseflow benefit of 1,
but one segment was a high elevation tributary with little life and no fish living in it
and the other is a segment of the Sacramento River that supports larger variety of life,
including many endangered fish. In such a situation, the biological information informs
which segment most needs environmental flows if we cannot provide flows everywhere.

To include biological potential in the benefit calculation, we use the PISCES database
(Santos et al., 2014), which provides comprehensive range information for all native fish
taxa in California. It may be beneficial to include other organisms in benefit calculations,
but currently no complete dataset of presence/absence exists for other aquatic organisms
in California. In this case, fish indicate the health of the overall stream ecology.

The PISCES database uses HUC12 subwatersheds to store taxa presence information.
These units are coarser than stream segments, necessitating an interpolation of the data
before use for stream segment benefit calculations. The simplest form of interpolation
would be to say that a species inhabits any stream segment within any subwatershed
the species inhabits, producing a more complete picture of the species range, but also a
significant overestimate in most cases. A more refined method would be to use species
life history traits and flow information for segments to match species to specific segments
in each subwatershed, though data to support this kind of calculation would need to be
developed.

To reduce overestimation while using available data, we chose a third, semi-probabilistic
approach to estimating species presence. The method first estimates which Strahler
stream orders a species is likely to inhabit within its range and assigns a probability of
presence to each stream order for each fish. It then includes a species as present, at
the level of the assigned probability, in each segment within each subwatershed in its
range. For example, consider a stream segment with a Strahler stream order of 2 inside
the range of a species we estimate is in Strahler stream orders of 3 and above based on
PISCES data. For this segment, we do not mark the species as absent, but instead give
it a reduced probability of 0.45 for being present, with the calculations detailed below.
This method is imperfect, but helps include some uncertainty in interpolation in the final
results.

Probabilistic Downscaling

We start by calculating each taxon’s primary stream order, the stream order value above
which we assume the taxon is present and below which we decrease probability they
are present. The calculation of primary stream order is based on an assumption that
most fish taxa in California will be present in the stream segment in a subwatershed that
connects it to the downstream subwatershed, since that segment ensures connectivity of
the range. Depending on the taxon, they may or may not be present in other segments,
but a conservative estimate that works for most taxa suggests they are at least in this
connecting segment2.

2This assumption will not hold for all species. Some are highly endemic, and others like tributaries.
But it works as a first pass for downscaling a large dataset and can be refined with more information
later.
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The segment that connects each subwatershed to a downstream subwatershed will
have the largest stream order in the upstream subwatershed. Once we have largest stream
order value for each subwatershed, we examine each taxon individually and gather all of
the connecting stream order values for subwatersheds within the taxon’s range. For each
taxon, we select the lowest value as their primary stream order (

Figure 3.8 Method for determining a hypothetical taxon’s primary stream order and as-
signing probability throughout their range. Size of lines denotes stream order
and color denotes estimated taxon presence probability. Numbers indicate
the maximum stream order in each watershed. The primary stream order
S∗ (the smallest maximum stream order in any watershed in their range) for
this taxon is 2. Segments outside of their range are ignored.

Once we have a primary stream order value for each taxon, we apply presence prob-
abilistically to all segments within their subwatershed-based range. Any stream segment
in their range that exceeds the primary stream order is assigned a presence probability
of 1, while segments with the primary stream order are assigned a probability of 0.9 to
reflect some uncertainty. Stream segments with smaller stream orders receive smaller
presence values according to the function 0.9 ∗ 0.5S∗−S where S∗ is the primary stream
order for the taxon and S is the stream order of the segment being evaluated. Table 3.2
includes presence probabilities for stream segments with Strahler stream orders 1-5 based
on this equation.
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Table 3.2 Calculated probabilities of fish presence for segments wih Strahler stream
orders 1-5 within a species’ range if the fish has a primary stream order S∗ of
1-5.

S∗ S=5 S=4 S=3 S=2 S=1
1 1 1 1 1 0.9
2 1 1 1 0.9 0.45
3 1 1 0.9 0.45 0.225
4 1 0.9 0.45 0.225 0.1125
5 0.9 0.45 0.225 0.1125 0.0563

The calculation marks species as living in larger stream orders within their range while
only assigning high probabilities in smaller streams if the taxon’s range includes headwater
areas with low stream order outlets. The probability values are not empirically derived,
but are instead useful in adding some uncertainty to fish presence in each downscaled
segment. Future work should refine the methods used to downscale taxa ranges and
probabilities assigned. Calculated primary stream orders for every taxon marked as
”wide ranging” are included in Table C.4.

Establishing Species Benefit from Segment Benefit

Once the probability that each species is present in a segment is established, the base
benefit Bbase is updated with biological information. The steps to obtain the total benefit
Btotal are:

1. Sum the benefit from each flow component for the day Bbase to obtain a daily
available benefit.

2. Sum all taxa presence probabilities ptaxa for the segment to obtain the total number
of taxa expected to benefit.

3. Multiply the two together, expressed as as Btotal =
∑

ptaxa ∗
∑

Bbase.

A future version may only sum the probabilities of taxa considered sensitive to vari-
ations in each component, which would require some reformulation. We currently lack
comprehensive data to support such an approach, though Poff and Zimmerman (2010)
provide a review on ecological responses to altered flow that could be used in addition to
expert knowledge to build the required data.

3.3.3 Extending to multiple days and reaches

Once we have calculated the daily biologically-based benefit values for each segment, we
can now perform annual, basinwide assessments. To obtain an annual basinwide value,
simply sum all benefit values for each segment in the basin and day of the water year as
in the equation in the objective function shown in Equation 2.1.

Alternative approaches could involve spatial connectedness of benefit values, reducing
benefit for sets of segments with very low benefit that have higher benefit segments on
each side. A situation like this with patches of high benefit could indicate that, while
each location meets the needs of a species, the lack of contiguous high benefit segments
could reduce the overall benefit. Migratory and resident fish would respond differently
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to high benefit patches, requiring additional data on how fish use the streams (Adams,
2018; Adams et al., 2017).

3.4 Discussion

The method of calculating environmental benefit presented here has the benefit of requir-
ing little information compared to other environmental flow models. Instead of calculating
detailed and specific hydrologic information and relating it to species behavior, it takes an
approach about restoration of historical processes that allows it to simplify the analysis
to how well modeled flows match historical flows.

This method includes significant limitations, however. When historical flow data is
unavailable or unreliable, some other way to quantify each functional flow is needed.
More traditional environmental flow methods such as ecosystem and habitat modeling or
expert judgment could fill the gaps.

Another limitation is in how the fuzzy components encourage variability in an opti-
mization context. As currently constructed, they give an optimization model the ability
to choose exact timing magnitude values for flows. But with large ranges of time and
flow magnitude that all result in the same benefit value of 1, in the absence of other
pressures, we might expect repeated years of model runs to result in similar functional
flow regimes. Care should be exercised in interpreting results to focus on the trade-off
curves as opposed to the specifics of the resulting optimal flow regime.

Finally, as noted early on, CEFF does not define single way to construct flow compo-
nents from the modeled percentiles. The choices described in this chapter leave a large
amount of natural variability out of the component entirely, or in the marginal ”fuzzy”
portion of the component. We chose values that seemed most appropriate for defining
each component in an optimization context, but future work should include sensitivity
analyses to understand the affect of these choices on the resulting trade-off curves.

3.5 Summary

This chapter discusses a simple method to assess the alignment of flows with their histori-
cal values to support the development and assessment of instream flow requirements. The
method uses modeled historical flow data to construct a timing, duration, and magnitude
box for a stream segment and flow component. Potential flows can be compared within
that box to understand their alignment with historical flows and, by proxy, benefit to the
ecosystem. We then scale the benefit, Bbase, by the number of fish species we expect to
be present to obtain Btotal for a stream segment. In summing the values of Btotal for all
segments and days in a basin, we can assess the environmental value of flows in the sys-
tem. The method assumes that alignment of flows provides environmental benefit on its
own, which may not be true everywhere due to impairments in water quality or habitat.
However, the simplifications in this method are designed to allow for widespread, rapid
assessment of an entire basin, even in places without water quality data. The method
allows for a rough valuation of environmental flows for use in further modeling.
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Chapter 4

Estimating Trade-off Curves

4.1 Introduction

Chapter 3 detailed a method to quantify the value of a hydrograph to the ecosystem as
a functional flow. This chapter applies that method in an optimization context along
with a simplified economic demand curve for water. It uses an evolutionary algorithm
to produce trade-off curve estimates for single stream segments or basins with objectives
for environmental and economic benefit of flows based on chapter 3 and the objective
functions in section 2.4.2. Trade-off curves have direct management relevance, including
as information for a social process of setting environmental flow recommendations.

The model produced trade-off curves for many scenarios covering multiple water years
and subsets of the Cosumnes River watershed. Computation time and model complexity
prevented optimization of the entire watershed. The model is designed to be flexible and
most pieces are data-driven and can be modified for each model run, allowing for future
modifications that take advantage of the existing codebase even when applied to new
watersheds. While this chapter’s results are not immediately actionable for managers,
they demonstrate the possibilities and provide a foundation to build on for a future model
to more directly support management objectives by quantifying efficient trade-offs among
objectives.
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4.2 Methods

4.2.1 Site

Figure 4.1 Map of the modeled portion of the Upper Cosumnes watershed. Thick seg-
ments in light blue are included in the model and thin dark segments were
excluded because they lack sufficient flow metric data. Direction of flow is
right to left on the mainstem Cosumnes.

The model optimized environmental flows on 43 National Hydrography Dataset stream
segments in the Upper Cosumnes watershed (Watershed Boundary Dataset ID 1804001308).
Four segments are downstream of the Michigan Bar USGS gage with the rest upstream.
The selected site within the watershed had flow information from the Michigan Bar gage
and available predicted flow metrics. The number of segments is constrained by comput-
ing power, with each function evaluation taking between 0.5 and 1 second to calculate
the benefit of flows. Since the model requires millions of function evaluations to test and
optimize, larger models are currently impractical but not infeasible.

The model includes two objective functions, as described in section 2.4.2. The decision
variable is the proportion of flow to reserve for environmental uses for each stream segment
and day included in the model. With 43 segments and 365 days in each water year, this
is 15,695 decision variables. We ran the model separately for water years 2010 and 2011,
moderate and wet water years, respectively, to assess performance for typical and high
flows.

A linear demand curve (Equation 2.2) for water is based on the total amount of water
demanded and an initial price of water, with the price of water reaching 0 when all
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demand is satisfied. The total demand varies by water year and model run to explore the
relationship between economic demand and environmental flows. We set the demanded
amount of water at 80 percent of the most downstream segment’s total annual runoff.
The decision variables allow the model to change the segments and days to extract water
to meet demand.

4.2.2 Interpolating Total Daily Flow

A primary input of the optimization model is daily flow data for each stream segment.
Flow data are typically collected at stream gage sites, such as those from USGS, but the
Upper Cosumnes watershed only has a single USGS stream gage at Michigan Bar (USGS
ID 11335000). We used this gage to generate synthetic daily flows for every stream
segment based both on the historical gage data and the California Unimpaired Flows
Database, which provides modeled monthly data for every stream segment (Zimmerman
et al., 2018). The USGS gage data provides high-resolution temporal variation in flows,
while the Unimpaired Flows Database provides high-resolution spatial variation. Com-
bined, we have a dataset that simulates how real flow events may have been distributed
throughout the watershed.

To generate the daily flows, we first calculated a daily scaling factor for the gaged
stream segment by dividing the actual flow measured by the gage by the modeled monthly
flow from the Unimpaired Flows Database. We then applied the daily scaling factor to
the monthly data for every stream segment to generate daily flows. For example, if the
gaged segment had an estimated monthly flow of 200 CFS, but the gage showed a flow
of 220 CFS for the day, then the scaling factor for that day, across the basin, would be
220/200 = 1.1. Then, on another stream segment, if the modeled monthly flow was 21
CFS, the daily estimated flow was 21 ∗ 1.1 = 23.1 We applied this latter step to every
stream segment in the basin.

Using these values directly would cause each unit of water to be counted more than
once though, since we expect water in the upper segments to flow through all downstream
segments in the same timestep. We calculated the contribution of the local watershed
(Qi) by subtracting water available upstream from the water available in the stream
segment. If the amount upstream exceeds the total water available in a segment, the
local contribution was set to 0.
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4.2.3 Mass Balance in the Stream Network

Figure 4.2 Water from each segment’s local catchment (Qi) and water allocated to envi-
ronmental flows upstream are available to each segment for either economic
or environmental allocation. Extracted water (Di) is provided to the eco-
nomic objective function and the remaining water (Ei) stays instream and is
used to satisfy the environmental flow objective.

The model routes flows through an NHDPlus Version 2 stream network as shown in
Figure 4.2. In each timestep it starts with the headwaters segments and continues down-
stream. The decision variables indicate the proportion of locally available water (Qi +
undiverted upstream flow) to remain instream as environmental flow (Ei) with the remain-
ing water (Di) extracted and passed to the economic objective function. Conceptually,
each segment’s point of diversion is at its top and water for economic purposes comes from
a segment’s total before the environmental flow calculation occurs. The environmental
flow is available both for the segment’s flow benefit and also to the downstream segment
where it combines with the segment’s locally contributed water as total available water
to extract or use for environmental flows.

4.2.4 Software and Model Runs

This model was built and tested using Python 3.7.4 on Windows 10 and run on Ubuntu
18.04.3 virtual machines with Python 3.6.9 hosted in Microsoft Azure. It uses Django 3.0
and SQLite for data storage and management, and uses the Python package ”Platypus”
for running the evolutionary algorithms (Hadka, 2015). Full code for the model is on
GitHub at https://github.com/ceff-tech/belleflopt/.

We ran the model with many parameter sets and algorithms to see if any one set was
better for optimizing flows and also to get a qualitative sense of the model’s sensitivity
to specific inputs.
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Model A. We ran every combination of model for each of the two water years (2010 and
2011), two population sizes (50 and 100), four random seeds (19991201, 18000408,
31915071, and 20200224), and four algorithms for 50,000 function executions (NFE)
each. The algorithms used were the Nondominated Sorting Genetic Algorithm
II (NSGAII), Generalized Differential Evolution 3 (GDE3), Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2), and Speed-constrainted Multiobjective Particle
Swarm Optimization (SMPSO) algorithms (Deb et al., 2002; Kukkonen and Lampinen,
2005; Zitzler et al., 2001; Nebro et al., 2009). While the model does not converge in
50,000 NFE in any of these cases, we used it to explore which combinations might
be likely to converge if run for more NFE and which algorithms might be used for
more complete runs.

Model B. Based on the results in Model A, we ran both the 2010 and 2011 water years
with the NSGAII and SPEA2 algorithms and a population size of 100 for 1,000,000
NFE each.

Model C. We ran both the 2010 and 2011 water years with NSGAII with a constraint
on the lower limit on the proportion of a segment’s flow assigned to the environment
set at 0.75. We attempted this both to reduce the solution space to see if it would
converge faster and also to prevent it from drawing all economic water from one or
two segments as we might expect in the absence of such a constraint.

Model D. We ran a version that uses only 365 decision variables in the complete net-
work. Each decision variable is the proportion of flow used for environmental flows,
but the proportion is applied to every segment in the network.

Because performance considerations prevented these versions of the model from con-
verging, we created another version (Model E) that used a single segment where the
Michigan Bar gage is installed (NHD COMID 20192498). We ran it for both the 2010
and 2011 water years with four separate seeds each (34578239, 793539823, 912264360,
and 20200224). The goal of this approach was to have the model run quickly enough on
current hardware to converge and examine the resulting hydrographs.

We also ran the model to verify the approach of assigning benefit from flow com-
ponents. We ran the model for one NFE with a fixed percentage of unimpaired flows
allocated to environmental flows and calculated the benefit of those flows. We ran this
for water years 2010 and 2011 for integer percentages from 0 to 100. If the approach is
valid, benefit would increase as a larger percentage of flows are allocated to environmental
flows.
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4.3 Results

The verification run of the model resulted in a clear positive trend in the relationship
between percentage of natural flow allocated to environmental flows and the estimated
benefit. The results are shown in Appendix Figure C.1 for the full network and Figure C.2
for the Michigan Bar segment. The results for water year 2011 show a small decrease in
benefit at the highest percentages of unimpaired flow, likely because four stream segments
show unimpaired peak flows that exceed the 90th percentile magnitude for the 2 year peak
flow metric. While this method cannot fully test the model on its own, it suggests there
are not glaring errors in the interpretation of flow components, the assignment of water
to them, and the estimation of benefit from combining the two in the model.

Initial runs in Model A did not show signs of improvement indicating that they may
eventually converge, even with weeks of computing time. The NSGAII and SPEA2
algorithms showed some improvement in the best options, leading to Model B where we
ran each for 1,000,000 NFE with a population size of 100 for a total of 10,000 generations.
That model was still slow to converge, though it showed some signs of improvement, so we
experimented with reducing the search space by putting a lower limit on the proportion of
flows dedicated to the environment (Model C) and with making a single decision variable
for each day of the water year regardless of the segment (Model D). Model C was not
appreciably faster per objective function evaluation, but improved more quickly. Model
D did not appear to produce useful functional flow hydrographs, possibly due to the
compounding effect of the withdrawal proportion as water flows through the network.

4.3.1 Michigan Bar Segment

Model E, which uses only the single Michigan Bar stream segment, converges on modern
hardware within approximately 24 hours and 500,000 NFE for water year 2010. It shows
the strengths and weaknesses of the environmental benefit calculations and produce trade-
off curves for the single segment. The four random seeds produce similar trade-off curves.
The model converges on environmental benefit first, then finds additional nondominated,
but marginal, economic results with worse environmental benefit, extending the trade-off
curve in the direction of lower environmental benefit. Resulting environmental benefit
values for the best hydrographs ranged from 3057-3085 for water year 2010 and 3728-3754
for water year 2011.

Water year 2011, shown in Figure 4.3 included flows high enough to trigger evaluation
of the peak component, resulting in higher overall environmental objective values. In
Figure 4.3c, the model preserved some peak flows in accordance with the segment’s flow
metrics (see Table C.2 for a listing), but allowed water from other peak events to be
extracted for economic use. Water year 2010, shown in Figure 4.4, had lower flows that
did not activate the peak component. As a result, the model extracted most water,
reducing environmental flows to baseflow, including existing small peak flows and leaving
a small recession flow. It resulted in a deeply convex trade-off curve since, without peak
flow benefit, the model could extract significant water for the economic objective without
reducing the environmental objective.

The Pareto front in Figure 4.3d shows that even the best environmental result from the
model includes most of the economic benefit (94 percent) since it allows for large amounts
of water extraction while supporting a functional flow hydrograph. The Pareto front in
Figure 4.4d indicates that the best environmental result has only about 80 percent of the
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(a) Best economic benefit result (B=837) (b) Compromise result (B=3551)

(c) Best environmental benefit result (B=3754) (d) Pareto front

(e) Economic objective convergence curve (f) Environmental objective convergence curve

Figure 4.3 Results of Model E for the Michigan Bar stream segment for water year
2011 with random seed 912264360. Red boxes on plots show outer bounds of
constructed flow components. Convergence plots show best objective value
encountered at each NFE. Full convergence plots are in Figure C.13 and
Figure C.14.
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(a) Best economic benefit result (b) Compromise result

(c) Best environmental benefit result (d) Pareto front

(e) Economic objective convergence curve (f) Environmental objective convergence curve

Figure 4.4 Results of Model E for the Michigan Bar stream segment for water year
2010 with random seed 912264360. Red boxes on plots show outer bounds
of flow components, except the peak component, which is not included here.
Convergence plots show best objective value encountered at each NFE.
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economic benefit from other results. The deep concavity of the trade-off curve suggests
that strong compromise candidates might be available, but the compromise result in
Figure 4.3b is qualitatively much worse, with only one peak flow, no spring recession,
swings between winter baseflow and no flow, and a much earlier drop to baseflow in the
summer.

4.4 Discussion

4.4.1 Model Performance

Though Model E’s results for the Michigan Bar segment do not provide complete insight
into basinwide environmental trade-offs, they show this approach’s potential to optimize
functional flow regimes and estimate their benefit. Even the single-segment model esti-
mates the amount of water that can be extracted for economic purposes in a water year
while maintaining a functional flow, which is a useful result on its own. The estimate for
water extraction would likely change with more segments in the model though, so the
result is incomplete.

With performance improvements, such as more efficient objective functions or better
use of multicore computers, the model could be expanded to cover a larger connected
network of stream segments as initially envisioned. Each water year converged in approx-
imately 500,000 NFE, equivalent to around 24 hours of computing time for water year
2010 and 48 hours of computing time for water year 2011. All trade-off curves from every
model version are concave, often deeply concave. Currently, we may lack enough detailed
information in the economic model or in the flow model to create different shaped trade-
off curves. Alternatively, the trade-off curves may be real representations that a concave
relationship exists between the objectives in these locations.
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Figure 4.5 Final Pareto fronts (red) and curves showing the benefit of all days allocating
the same fixed proportion of water to the environment (blue) with lower
proportions in the top left and higher proportions in the top right. Larger
versions of these plots are shown in Figure C.3 and Figure C.4.

In the results shown on Figure 4.3 and Figure 4.4, in both water years, the best en-
vironmental benefit (part c) may be the only viable solution, as a consequence of model
design. While the economic objective can gain more benefit from extracting more wa-
ter, nearly to the point of exhausting the system’s water, the environmental objective
includes concessions to the economic objective in the model design itself. By evaluating
a functional flow, rather than a full natural flow, as the highest environmental benefit,
the model allows for a large volume of extraction with no estimated losses to the envi-
ronmental objective, shifting the trade-off curve. The flaw is visible in Figure 4.5, which
shows the optimal Pareto fronts for model E with simple tradeoff curves generated from
the proportional scaling used in the verification runs of the model. In an ideal case, the
benefit values should match on those curves at their endpoints of all economic or all en-
vironmental flow. Between the endpoints though, the optimized results should improve
relative to the naive proportional allocation since they can take water for economic uses
at the least detrimental times.

Instead, the optimized results have a higher overall max benefit because the model
only values functional flows, which in some cases means flows must be reduced to be
valued. A more realistic approach may estimate high benefit for functional flows, but
provide slightly more benefit to the environmental objective as it approaches the natural
flow. Currently, the trade-off curve shows the consequences of degradation or alteration
beyond a functional flow regime more than the full choices available to water managers
in developing a functional flow regime.
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4.4.2 Model Expansion

Currently, this model requires unimpaired flow data for each segment over an entire
water year, limiting its use in impaired watersheds. To expand its use, modeled daily
unimpaired flows would be needed, or other adjustments to the model to account for
diversions and impoundments. Applying the model in one of these locations, provided
data is available, also presents a new opportunity to adjust the demanded quantity of
water to actual needs. We may also find use in adding additional flow information to
the model such as floodplain activation thresholds and the associated ecosystem benefit,
which could change the shape of the trade-off curves and better inform management.

Additionally, the economic objective function is highly simplified and assumes unlim-
ited storage and free conveyance of water to the point of use. Since the model is likely to
take all water from the most downstream segment, incorporation of pumping costs may
encourage a more realistic spatial distribution of withdrawals. A more accurate model
might treat the economic objective similarly to the environmental objective and build
components from a demanded magnitude and timing of water. The difficulty is that,
spatially, the point of use is often disconnected from the point of withdrawal, so we lack
data to attach economic components to specific segments aside from water rights. Mov-
ing from a model-global water demand to localized demands may make the model more
realistic, but also makes existing demands on the system a requirement, which may be
helpful in some cases, but not in others.

4.4.3 Potential Adjustments

This problem’s large set of decision variables made convergence difficult for traditional
evolutionary algorithms. One possible reason is that individual changes in so many
decision variables in a basin-scale model could cancel each other out when summed.
The benefit estimated for any particular day might go up or down, but the individual
effects cancel out so that the overall objective value does not change, even if some flow
adjustments were very good. The problem may benefit from two pass optimization, where
the first pass significantly narrows the solution space in a deterministic time-frame before
initiating an algorithm such as NSGAII.

Another possible solution may be a windowed evaluation approach. By evaluating a
fixed set of days, such as a week, on a single segment at a time, the model could reduce
the chance that changes in decision variables will cancel each other out. If it evaluates
each window many times and uses the results as an initial solution to an evolutionary
algorithm, we may be able to increase the chance of convergence. Other possible ways
to reduce the number of decision variable include using weekly decision variables and
translate them to daily flows, use decision variables that represent different timeframes
(eg: one decision variable covers all of summer baseflow, but winter peak component has
many), or pre-narrowing the range of each decision values based on estimated benefit
surfaces from chapter 3. The model appears more likely to converge in test runs with
pre-narrowed ranges for decision values, though it is still slow and the method could be
further refined.

As written, in some conditions, the model may undesirably alter flows without a
corresponding decrease in environmental benefit. For example, in water year 2010, when
flows were too low to activate the peak flow component, the best environmental flow
regime the model produced stays close to the lower side of baseflow until the spring
recession. In that case, the model sees the water above baseflow as essentially free. It can
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take that water to increase the economic objective without decreasing the environmental
objective, but at the expense of variation. When additional water is extracted at times
or in volumes that may be environmentally detrimental, but the environmental objective
does not return a lower value, then the shape of the trade-off curve will be distorted
relative to how we would actually view that alteration. Future versions of the model
should reconsider how to handle preserving some variability in years with flow magnitudes
less than the peak flow component.

The model also struggles to handle the spring recession, possibly because of how the
model estimates benefit for recession flows. Currently, for a small set of days, the model
can get the most benefit by having a continuous decrease in flows for each day. But if the
set of days increases to more than 14 days and then the model adjusts the environmental
flow proportion, it is most likely to cause it to estimate 0 for the entire recession because
of the penalty in the recession benefit functions. While the rules were set up to discourage
large drops on any single day, they may also make it difficult for the model to find flow
regimes with spring recessions. A future version of the model should rewrite the recession
rules to make it easier for a random algorithm to create flow regimes that imitate recession
flows while still discouraging large drops in flow. Another factor in the spring recession
is that in cases where the recession component overlaps with the summer baseflow, the
model may decide that it is just as optimal to drop to summer baseflow where it can get
credit for summer baseflow and spring recession for the day. It then increases the flows
and resumes a spring recession. A rapid drop in flow magnitude of this type is exactly
what we wanted to avoid with the rules set up for recession benefit. The rules may need
adjustment such as by increasing daily benefit for each subsequent recession day so that
breaking a continuous streak of recession is disadvantageous.

Finally, the model’s behavior when flows fall outside of flow components leads to
undesirable choices. Currently, if natural flows drop below winter baseflow (e.g.: days
135-145 of water year 2010), the model decides to take all the daily flow for economic
purposes, because there is no penalty for going lower. Results of this type add further ev-
idence that the model needs to evaluate flows outside of components, possibly penalizing
very low flows, even if it considers flows within the component boxes to be ideal.

4.5 Summary

The results show that the method described in this chapter can produce potential func-
tional flow regimes in support of trade-off curve estimation. With future refinement to
model environmental benefit calculations, model speed, and convergence performance, it
could produce trade-off curves that support environmental flow decisions.
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Chapter 5

Conclusions

This thesis proposed a model and reusable tool that optimizes environmental flows and
water extractions for every stream segment in an entire basin, with a sample application
in the Cosumnes River watershed in California. The optimization algorithm did not
converge on a result for the larger networks of stream segments, but did converge for
a single segment application, producing trade-off curves and potential functional flow
regimes. Though the application has limited use in the Cosumnes watershed, it provides
a demonstration for other watersheds. Additionally, the supporting work in estimating
the environmental benefit of a functional flow regime may have use in CEFF processes as
an extension to the work of Patterson et al. (In Review) in detecting hydrologic features.

5.1 Future Work

Future research for this model includes:

Validate species presence probabilities. The methods used to scale species data to
stream segments should be validated by experts or external data. Other aquatic
taxa beyond fish should be incorporated when possible.

Refining recession benefit calculations. Model results showed a spring recession only
in ideal cases where the water year had a clear recession in the natural hydrograph.
Only the best environmental results preserved the recession, despite its critical role
in stream ecology. Further, the model fails to develop a spring recession in the more
variable spring flows of water year 2011.

Improving model speed. Each function execution of the 41 segment model requires
1 second of CPU time on current hardware. An effective EA typically needs to
run much faster, or have significant computing resources available, to run enough
objective function executions to both converge the model and repeat it enough
times to demonstrate a stable result. Performance optimization in the objective
function make the model more valuable by increasing the ability to run the model
to convergence and allowing us to run more model years or watersheds.

Benefit calculation changes. To provide a more complete picture of the tradeoffs in
extracting water, the model needs to estimate benefit beyond when functional flows
are met.
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Algorithm changes to improve convergence. The larger models had difficulty con-
verging, likely due to the number of decision variables. The model discussion notes
potential solutions to increase the rate of convergence, including windowed evalua-
tion, simplifications in the decision variables, reducing the available range of decision
values (which showed potential in early testing), and two phase optimization.

With these improvements to the core model, further work would include additional
code documentation and a web interface. Code documentation supports other researchers
and managers in extending the model to support their use cases. The web interface
would be designed for decision support, allowing managers without software development
resources to provide parameters to the model and see resulting trade-off curves.
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Appendix B

Code

Code for this project is available in the Git repository at https://github.com/ceff-tech/
belleflopt. The code revision used was 0ad1adfb73af470cf6ab3a75a7a999648684f4b7.

Code to assign probabilities of species presence from PISCES data is available online
in the Git repository at https://github.com/ceff-tech/ProbabilisticPISCES. The code
revision used was 5be9c36f3a02f329346278c945a30bb47ab70946.
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Appendix C

Additional Figures and Tables

Full sets of output plots for the versions of the model run for this document are available
online at https://ucdavis.box.com/v/santos-thesis-eflows-opt.

C.0.1 Model Verification

Figure C.1 Validation plot showing estimated benefit to set of 43 segments in study area
with increasing percents of available flows allocated fo instream flow. Water
year 2011 decreases in benefit at the highest flows because some unimpaired
flow magnitudes exceed peak component maximum magnitude values.
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Figure C.2 Validation plot showing estimated benefit for the Michigan Bar stream seg-
ment with increasing percents of available flows allocated fo instream flow.
Water year 2011 decreases in benefit at the highest flows because some flow
magnitudes exceed peak component maximum magnitude values.
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Proportional and Optimized 2010

Figure C.3 Final 2010 Pareto front (red) and a curve for Model E showing the benefit
of all days allocating the same fixed proportion of water to the environment
(blue) with lower proportions in the top left and higher proportions in the
top right.
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Proportional and Optimized 2011

Figure C.4 Final 2011 Pareto front (red) and a curve for Model E showing the benefit
of all days allocating the same fixed proportion of water to the environment
(blue) with lower proportions in the top left and higher proportions in the
top right.
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C.0.2 Michigan Bar 2010 Results

All model runs here used a population size of 100 and the NSGAII algorithm and ran for
1,000,000 NFE. When the winter peak flow component box is not included in a graph, it
is because in water year 2010, flows were not high enough to activate the peak component
as it is built by the model.

Random Seed 20200224

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.5 Model E Results for Water Year 2010 with Random Seed 20200224. Best
environmental benefit result was 3057 (unitless).
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Random Seed 912264360

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.6 Model E Results for Water Year 2010 with Random Seed 912264360. Best
environmental benefit result was 3077 (unitless).
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Random Seed 34578239

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.7 Model E Results for Water Year 2010 with Random Seed 34578239. Best
environmental benefit result was 3083 (unitless).

54



Random Seed 793539823

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.8 Model E Results for Water Year 2010 with Random Seed 793539823. Best
environmental benefit result was 3085 (unitless).

55



C.0.3 Michigan Bar 2011 Results

Random Seed 20200224

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.9 Model E Results for Water Year 2011 with Random Seed 20200224. The
model for this seed used older plotting code, resulting in plots that
look different, though the underlying optimization code was equivalent.
NFE=1,000,000 for this seed.
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Random Seed 912264360

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.10 Model E Results for Water Year 2011 with Random Seed 912264360. Best
environmental benefit result was 3754 (unitless). NFE=800,000 for this
seed.
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Random Seed 34578239

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.11 Model E Results for Water Year 2011 with Random Seed 34578239. Best
environmental benefit result was 3728 (unitless). NFE=550,000 for this
seed.
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Random Seed 793539823

(a) Best environmental benefit result (b) Pareto front

(c) Environmental convergence curve (d) Economic convergence curve

Figure C.12 Model E Results for Water Year 2011 with Random Seed 793539823. Best
environmental benefit result was 3735 (unitless). NFE=550,000 for this
seed.
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Complete Convergence Curves

Figure C.13 Full Michigan Bar 2011 Environmental Objective Convergence for seed
20200224.
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Figure C.14 Full Michigan Bar 2011 Economic Objective Convergence for seed
20200224.
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C.0.4 Flow Metrics

Table C.1 Modeled flow metrics from Grantham et al. (in prep) used in the construction
of the fuzzy benefit surfaces.

Component CEFF Code Magnitude
Metric

Start Timing
Metric

Duration
Metric

Dry-season base
flow

DS DS Mag 50 DS Tim DS Dur WS

Wet-season base
flow

Wet BFL Wet BFL
Mag 50

Wet Tim Wet BFL Dur

Wet-season peak
flow

Peak Peak 20 Wet Tim Peak Dur 20

Fall pulse flow FA FA Mag FA Tim FA Dur
Spring recession
flow

SP SP Mag SP Tim SP Dur

In addition to the metrics in Table C.1, we also use Peak Fre 20 as the peak frequency
metric and SP ROC as the spring recession rate of change metric. For fall pulse flow, we
do not use a frequency metric because we assume only a single peak event for the flushing
flow (CEFF Contract Team, 2020).
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C.0.5 Michigan Bar Flow Metric Values

Table C.2 Modeled CEFF flow metrics values from Grantham et al. (in prep) used to
construct the fuzzy flow metric surfaces for the Michigan Bar stream segment,
COMID 20192498. Flow metrics marked with asterisks were not used in the
model.

Flow Metric p10 p25 p50 p75 p90
DS Dur ws 109.24 134.60 160.85 185.87 216.8
DS Mag 50 6.68 15.21 34.93 71.66 126.61
DS Mag 90 39.66 60.78 100.28 146.14 227.17
DS Tim 236.14 255.62 268.95 285.72 303.91
FA Dur 2 3 4 7 9
FA Mag 64.80 117.26 212.30 366.33 670.70
FA Tim 7.73 14 27.12 38.36 47.63
Peak 2 4334.80 6848.01 7639.14 10938.52 15425.46
Peak 5* 10779.49 12610.50 13731.42 19552.86 23449.10
Peak 10* 15779.05 18672.20 18814.76 20989.90 25919.84
Peak Dur 2 1 1 3 7 16
Peak Dur 5* 1 1 1 3 4.8
Peak Dur 10* 1 1 1 2 3.2
Peak Fre 2 1 1 2 3 5
Peak Fre 5* 1 1 1 2 3
Peak Fre 10* 1 1 1 1 2
SP Dur 32.88 44.26 60.31 85.65 115.06
SP Mag 667.77 1078.90 1953.72 3332.53 5718.93
SP ROC 0.04 0.05 0.07 0.10 0.16
SP Tim 167.67 183.5 199.68 212 228.01
Wet BFL Dur 71.73 95 121.11 147.06 171.18
Wet BFL Mag 50 290.42 376.22 510.00 688.33 936.90
Wet BFL Mag 10* 66.41 104.15 182.89 252.36 343.59
Wet Tim 52.11 64.68 76.82 89.72 102.60
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C.0.6 Species Presence from PISCES

Table C.3 Species present on modeled Cosumnes River stream segments and their
probability of occurrence at the Michigan Bar segment. The Michigan
Bar segment has all of the species present in other segments, though pres-
ence probabilities may vary in other segments. Data pulled from PISCES
on October 22, 2019 and available online at https://github.com/ceff-tech/
ProbabilisticPISCES/releases.

Common Name Scientific Name PISCES Species
Code

Probability

Inland threespine
stickleback

Gasterosteus aculeatus
microcephalus

GGA02 1

Western brook
lamprey

Lampetra richardsoni PLR01 1

Sacramento sucker Catostomus occidentalis
occidentalis

CCO01 1

Coastal rainbow
trout

Oncorhynchus mykiss irideus SOM09 1

Prickly sculpin Cottus asper CCA02 1
Sacramento
pikeminnow

Ptychocheilus grandis CPG01 1

Riffle sculpin Cottus gulosus CCG01 1
California roach Hesperoleucus symmetricus

symmetricus
CLS01 1

Sacramento blackfish Orthodon microlepidotus COM01 1
Sacramento hitch Lavinia exilicauda exilicauda CLE01 1
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C.0.7 Primary Stream Orders

Table C.4 Calculated primary stream order for all taxa in PISCES marked
as ”wide ranging”. Data pulled from PISCES on October
22, 2019 and available online at https://github.com/ceff-tech/
ProbabilisticPISCES/releases.

Common Name Scientific Name PISCES
Species
Code

Primary
Stream
Order

Klamath smallscale sucker Catostomus rimiculus CCR01 2
Lahontan speckled dace Rhinichthys osculus robustus CRO02 1
Sacramento speckled dace Rhinichthys osculus subspecies CRO01 1
Coastal threespine stickle-
back

Gasterosteus aculeatus aculeatus GGA01 1

Pit River tui chub Siphatales thalassinus subspecies CST02 2
Klamath River lamprey Entosphenus similis PES01 2
Lahontan redside Richardsonius egregius CRE01 1
Delta smelt Hypomesus pacificus OHP01 1
Shortnose sucker Chasmistes brevirostris CCB01 1
Lower Klamath marbled
sculpin

Cottus klamathensis polyporus CCK02 2

Paiute sculpin Cottus beldingi CCB02 1
Inland threespine stickle-
back

Gasterosteus aculeatus micro-
cephalus

GGA02 1

Lost River sucker Catostomus luxatus CCL01 1
Mountain whitefish Prosopium williamsoni SPW01 1
Arroyo chub Gila orcutti CGO01 1
Northern tidewater goby Eucyclogobius newberryi GEN01 1
Desert pupfish Cyprinodon macularius CCM02 1
Western brook lamprey Lampetra richardsoni PLR01 1
Sacramento pikeminnow Ptychocheilus grandis CPG01 1
Southern coastal roach Hesperoleucus venustus subditus CLS05 1
Southern tidewater goby Eucyclogobius kristinae GEK01 2
Humboldt sucker Catostomus occidentalis humbold-

tianus
CCO04 2

Staghorn sculpin Leptocottus armatus CLA01 1
Razorback sucker Xyrauchen texanus CXT01 2
Pit-Klamath brook lam-
prey

Lampetra lethophaga PLL01 2

Sacramento sucker Catostomus occidentalis occiden-
talis

CCO01 1

Tahoe sucker Catostomus tahoensis CCT01 1
Monterey sucker Catostomus occidentalis mnioltiltus CCO03 2
Coastal rainbow trout Oncorhynchus mykiss irideus SOM09 1
Riffle sculpin Cottus gulosus CCG01 1
Klamath speckled dace Rhinichthys osculus klamathensis CRO03 1
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Common Name Scientific Name PISCES
Species
Code

Primary
Stream
Order

Lahontan stream tui chub Siphatales bicolor obesus CSB04 2
Starry flounder Platichthys stellatus PPS01 1
Sacramento splittail Pogonichthys macrolepidotus CPM01 1
California roach Hesperoleucus symmetricus sym-

metricus
CLS01 1

Northern coastal roach Hesperoleucus venustus navarroen-
sis

CLS03 3

Lahontan cutthroat trout Oncorhynchus clarki henshawi SOC03 1
Owens sucker Catostomus fumeiventris CCF01 2
California killifish Fundulus parvipinnis CFP01 1
Striped mullet Mugil cephalus MMC02 1
Hardhead Mylopharodon conocephalus CMC01 1
Sacramento tule perch Hysterocarpus traskii traskii EHT01 1
Sacramento perch Archoplites interruptus CAI01 1
Prickly sculpin Cottus asper subspecies CCA02 1
Klamath largescale sucker Catostomus snyderi CCS01 1
Santa Ana sucker Catostomus santaanae CCS02 3
Sacramento blackfish Orthodon microlepidotus COM01 1
Coastrange sculpin Cottus aleuticus CCA04 1
Kern brook lamprey Lampetra hubbsi PLH01 3
Pit sculpin Cottus pitensis CCP02 1
Lahontan mountain sucker Pantosteus lahontan CCP01 1
Monterey hitch Lavinia exilicauda harengeus CLE03 2
Sacramento hitch Lavinia exilicauda exilicauda CLE01 1
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