

Evaluating Tradeoffs of Environmental Flows with Evolutionary Algorithms

aka Optimizing Environmental Flows in California

Nick Santos

https://github.com/ceff-tech/belleflopt nrsantos@ucdavis.edu @nickrsan

7.

Statewide Needs

- Set instream flow standards to protect biological communities
- Assess vulnerability of streams to future changes in flow conditions
- Prioritize areas for restoration/management
- Evaluate/inform management actions
 - e.g., reservoir operations, water withdrawals

Social process following scientific process

$$B = \sum_{i=0}^{D} -\frac{P}{D}i + P$$

P = Starting price D = Total units

demanded (default:

80% of flow)

Future Updates

Primary Stream Order Order*(species) = min($max(stream\ order\ \forall segments \in HUC12)$ $\forall HUC12s \in species\ historical\ range$

Models A: Experiment with parameters • B: Long runs of successful Model A params · C: Min constraint on proportion of flow for environment • D: Daily decision variable for all segments • E: Single segment

Hydrographs

Economic Convergence

Under the Hood

- Python 3
 - Built as a platform/package for experimentation
 - Platypus for optimization
 - Django for web support and database access
- ArcGIS Pro, QGIS, fiona for spatial
- Running standalone, or tasked and distributed via Microsoft Azure Pipelines
- Open source/MIT License:
 - https://github.com/cefftech/belleflopt

Evaluating Tradeoffs of Environmental Flows with Evolutionary Algorithms

aka Optimizing Environmental Flows in California

Nick Santos

https://github.com/ceff-tech/belleflopt nrsantos@ucdavis.edu @nickrsan

